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Abstract—This paper proposes a kernel canonical variate anal-
ysis (KCVA) approach for process fault detection. The technique
employs the kernel principle to map the original process obser-
vations to a high dimensional feature space on which canonical
variate analysis is performed. The aim is to obtain an effective
monitoring technique that accounts for non-linearity and process
dynamics simultaneously. The kernel principle accounts for non-
linearity while the CVA accounts for serial correlations widely
encountered in dynamic processes. The kernel CVA algorithm
proposed in this work is based on QR decomposition in order
to avoid singularity problems associated with kernel matrices
which require a regularisation step. The technique is evaluated
using the Tennessee Eastman Challenge process. Tests show the
effectiveness of the proposed kernel CVA approach.

I. INTRODUCTION

Using multivariate statistical techniques to monitor chemical
plants have gained much research interest in the last few
decades. These techniques depend mainly on process history
data and are therefore relatively easier to employ in large scale
processes (i.e. processes involving several dozens or higher
number of measured variables) compared to the classical
approaches based on rigorous process models derived from
first principles. Process plants generate large amounts of data
from measuring several variables during normal operations.
This is possible due to advancement in instrumentation and
automation technology. The data acquired are easily stored
and/or explored to extract useful information about the pro-
cess. Improvement in data analysis applications and increase in
computer power have also contributed immensely in providing
the stage for data-driven techniques to thrive. Two early
examples of multivariate statistical methods which are very
widely used are Principal Component Analysis (PCA) [1] and
Canonical Correlation Analysis (CCA) [2]. Both PCA and
CCA are eigenvalue problems, however, PCA is used in cases
involving a single collection of variables while CCA is used
when considering two sets of variables.

Canonical correlation analysis attempts to find the existing
relations between two multivariate data sets. This is achieved
by obtaining linear combinations of each of the original
sets of variables and determining the pairwise correlations
of the linear combinations of the two sets of variables. The
linear combinations are called canonical variates while the

pairwise correlations are known as canonical correlations. The
strength of the association between the two sets of variables
is measured by the canonical correlations. If correlation is
considered to be the main determinant of information in the
original two blocks of variables, then CCA can be used to
obtain a reduced dimensional set of variables from the original
data sets by discarding the canonical variate pairs with very
low correlations. However, both PCA and CCA are static and
linear techniques. They are therefore deficient in capturing
relations in data rich in dynamic and non-linear characteristics.

Many complex chemical industry processes exhibit both
non-linear and dynamic behaviour. Therefore, to effectively
monitor such processes, the techniques employed are expected
to capture these characteristics. Otherwise abnormal process
conditions may be detected long after they have occurred
or may not be detected at all. Both of these situations
can compromise process safety, operational efficiency and
consistent product quality, which are extremely important in
chemical process industries. Ineffective monitoring can also
lead to less than optimal maintenance practices leading to
frequent equipment break down, longer downtimes and higher
operational cost.

Several methods have been proposed to address either non-
linearity or process dynamics separately but not many studies
have addressed tackling both properties simultaneously. One
of the few studies reported in the literature which address
both of these characteristics was conducted by Choi and
Lee [3]. They proposed the dynamic kernel PCA approach
and tested it on a simulated non-linear process as well as
a wastewater treatment process. This approach employed a
kernel function to capture the non-linear relations and a time
lag-data extension of the original observations to describe
the dynamics of the process. They reported that the method
provided better monitoring evidenced in lower missing alarms
and smaller detection times compared to PCA and KPCA. The
kernel methods are the preferred techniques for capturing non-
linear relations compared to methods based on neural network
and principal curves because they do not require solving a
non-linear optimization problem. However, in the DKPCA
technique proposed by Choi and Lee, the kernel approach
was combined with an extension of the PCA (dynamic PCA)



which has limitation in capturing process dynamics [4]. This is
likely to limit the performance of this technique especially in
faults that are not easily detectable. In other words, although
the approach has a good technique for describing non-linear
relations, the method employed for accounting for process
dynamics, being an extension of a linear algorithm (i.e. PCA),
leaves room for improvement.

Canonical variate analysis (CVA) is a state-space based
technique which is widely reported as an appropriate method-
ology for monitoring dynamic processes [5]–[8]. Like the
CCA, the CVA finds relations between two sets of variables
but the two sets of variables are obtained from expanding an
observation at a given time instant to p past and f future
measurements, in order to account for serial correlations.

To improve the monitoring of non-linear dynamic processes,
Odiowei and Cao [4] proposed the CVA with KDE technique.
In their work, the CVA was associated with kernel density-
based upper control limits derived from the estimated prob-
ability density functions of the monitoring indices instead of
determining the control limits based on the Gaussian assump-
tion. Nevertheless, this approach does not directly address
non-linear problems in a dynamic process. Considering the
successful application of kernel methods in several application
domains and the CVA technique in describing non-linear and
dynamic behaviour respectively, a combination of these two
approaches should make an appropriate scheme for describing
non-linear and dynamic relations simultaneously in data-driven
process monitoring. However, not much is reported on kernel
CVA in the literature even though many studies involving
kernel extensions to the CCA exist [9]–[11]. A management
system based on kernel CVA to monitor and diagnose smart
homes is reported by Giantomassi and others in [12] but appli-
cation of this technique in the chemical process industry is not
well investigated. Also, the work mentioned above does not
provide a comparison of the technique with other approaches.
This makes it difficult to assess how its performance compares
with other known techniques. Furthermore, since the past and
future kernel matrices generated are singular, regularisation of
these matrices is needed to perform the matrix inversion step
required to implement their CVA algorithm.

The objective of this paper is to implement KCVA using
QR decomposition to preclude the need for regularising the
kernel matrices generated and to investigate the performance
of the proposed approach in monitoring a chemical process.
The paper also provides a comparison of the effectiveness of
the technique with the kernel CVA approach based on the
regularisation of singular kernel matrices. Assessment of both
techniques was done by applying them to simulation data
obtained from the Tennessee Eastman benchmark process.

The rest of the paper is organised as follows: Section II
summarises the KCVA procedure adopted. Section III shows
how to compute the upper control limits of the monitoring
statistics using the KDE method. The proposed kernel CVA
based process monitoring procedure is presented in Section IV.
Section V describes the application to the Tennessee Eastman
process while conclusions reached are presented in Section VI.

II. KERNEL CANONICAL VARIATE ANALYSIS

The idea of kernel CVA is to extract state variables that also
capture non-linear characteristics in the observed data using
non-linear kernel transformation and CVA. A brief description
of the kernel CVA technique adopted is given in this section.
Detailed discussion including mathematical procedure on non-
linear mapping based on a kernel function and the CVA
algorithm can be found in [4], [13]–[15].

To account for time correlations, each observation vector x
is expanded at a given time point t to obtain information from
the past (p) and future (f) measurements each containing d
variables using (1):

x(p,t) =


x(t−1)
x(t−2)

...
x(t−p)

 ∈ <dp and x(f,t) =


x(t)

x(t+1)

...
x(t+f−1)

 ∈ <df

(1)
The various components are mean-centred as follows:

x̂(p,t) = x(p,t) − x̄(p,t) and x̂(f,t) = x(f,t) − x̄(f,t) (2)

where x̄(p,t) and x̄(f,t) are the sample means of x(p,t) and
x(f,t) respectively. The past and future vectors are then ar-
ranged together in columns to obtain the corresponding past
and and future matrices, Xp and Xf respectively.

Xp =
[
x̂(p,p+1), x̂(p,p+2), . . . x̂(p,p+M)

]
∈ <dp×M (3)

Xf =
[
x̂(f,p+1), x̂(f,p+2), . . . x̂(f,p+M)

]
∈ <df×M (4)

where the columns of the truncated Hankel matrices for N
observations is M = N − f − p+ 1.

To apply the kernel principle, non-linear mappings, Φ1 and
Φ2 are used to map <dp and <df into a high dimensional
feature space, Φ1 : <dp −→ F and Φ2 : <df −→ F
respectively. Kernel matrices (Kp and Kf ) are obtained using
the kernel trick, ( [13], [14]):

Kp = 〈Φ1 (Xp) ,Φ1 (Xp)〉 , (5)
Kf = 〈Φ2 (Xf ) ,Φ2 (Xf )〉 (6)

where the elements of these kernel matrices are defined as

(Kp)ji =
〈
Φ1

(
x̂(p,p+j)

)
,Φ1

(
x̂(p,p+i)

)〉
(Kf )ji =

〈
Φ2

(
x̂(f,p+j)

)
,Φ1

(
x̂(f,p+i)

)〉
for all j, i = 1 . . . ,M . These kernel matrices are mean-centred
as follows:

Kcp = Kp −BKp −KpB + BKpB (7)

Kcf = Kf −BKf −KfB + BKfB (8)

where Kcp and Kcf are the past and future mean-centred
kernel matrices, B is an M×M matrix in which each element
is equal to 1

M .
Kernel CVA seeks to find weights which make the linear

combinations of Kcp and Kcf have maximal correlations.



Since kernel matrices are ill-conditioned and suffer compu-
tational instabilities, a regularisation step is normally needed
so that the matrix inversion required by the CVA algorithm
can be carried out. However, such a regularisation step reduces
the accuracy of the model which makes the monitoring perfor-
mance poor. In this paper, the mean-centred past and future
kernel matrices were factorised using QR decomposition as
follows:

Kcp = QpRp and Kcf = QfRf , (9)

where Qp and Qf are orthogonal matrices and Rp and Rf are
upper triangular matrices. Though Kcp and Kcf are not full
rank, they were managed by using the MATLAB backlash
operator which makes them equivalent to pseudo-inverses.
The product of the orthogonal matrix pair was computed and
canonical variates were obtained by performing singular value
decomposition (SVD):

W = QT
f Qp = USVT , (10)

where T denotes transpose, U and V are orthogonal matrices,
while S is a diagonal matrix whose entries on the main diag-
onal (singular values) show the degree of correlation between
pairs of U and V. This procedure precludes the computational
problems associated with obtaining the scaled Hankel matrix
for performing SVD when covariance and cross-covariance
matrices are used in a KCVA-based methodology as proposed
in [12] and is a major strength of the proposed approach.

The normalised left and right singular vectors, (U∗) and
(V∗) respectively are obtained using the following:

U∗ = R+
f U (M − 1)

1
2 and V∗ = R+

p V (M − 1)
1
2 ,
(11)

where the superscript in R+
f and R+

p represent pseudo-inverse.
Sorting the normalised singular values and the columns of
the singular vectors associated with them in descending order
makes V∗n (i.e. the first n columns of V∗), the most dominant
pairwise correlations with those of U∗. Thus, the transforma-
tion matrices for determining the n-dimensional state variables
and residuals are obtained as:

J = V∗n ∈ <M×n and L =
(
I − JJT

)
∈ <M×M (12)

The state space Z and residual space E are computed using
(13):

Z = J ·Kcp ∈ <n×M and E = L ·Kcp ∈ <M×M (13)

Hotellings T 2 and the Q statistic or squared prediction error
(SPE) are also used in kernel CVA as the monitoring statistics.
The Hotellings T 2 monitors the changes in the state space
while the Q statistic monitors the changes in the residual
space. They are determined using (14)

T 2
k =

n∑
i=1

z2i,k and Qk =

M∑
i=1

e2i,k, (14)

where n is the number of states retained, zi,k and ei,k are
(i, k)th the entries of Z and E matrices respectively.

III. COMPUTATION OF UPPER CONTROL LIMITS

To correct the Gaussian assumption, the kernel density esti-
mation (KDE) technique was used to estimate the probability
density functions (PDF) of the monitoring indices. Upper
control limits were computed from the estimated PDFs instead
of using parametrically obtained control limits.

Given the probability density function g(x), the probability
of x to be less than c at a specified confidence level α is given
by (15):

P (x < c) =

∫ c

−∞
g(x) dx = α (15)

The control limits of the monitoring statistics (T 2 and Q) were
determined using (16).∫ T 2

α

−∞
p(T 2) dT 2 = α and

∫ Qα

−∞
p(Q) dQ = α (16)

A more comprehensive account of the KDE technique includ-
ing the importance of selecting the bandwidth H and methods
of obtaining an optimum value can be found in [16] and [17].

IV. FAULT DETECTION PROCEDURE FOR KERNEL
CANONICAL VARIATE ANALYSIS

Similar to other multivariate statistical process monitoring
methodologies, the fault detection strategy of kernel CVA
involves two phases: off-line training and on-line monitoring
or testing. The off-line training phase involves development
of the process model, calculation of the monitoring indices
and their upper control limits using the normal operation
data. Conversely, on-line monitoring involves computing the
monitoring indices using faulty or test data and comparing
their values with the control limits obtained in the off-line
training phase to determine the status of the process. The steps
involved in the proposed kernel CVA technique for the training
and monitoring phases are outlined below:

A. Off-line Training

1) Obtain observation vector.
2) Expand observation vector at each time point t to

obtain information from the past (p) and future (f)
measurements using (1).

3) Form kernel matrices of the past and future measure-
ments.

4) Mean-centre the past and future kernel matrices. Fac-
torise the mean-centred past and future kernel matrices
using QR decomposition to obtain pairs of upper trian-
gular and orthogonal matrices.

5) Compute the product of the orthogonal matrix pair
from step 4 and perform singular value decomposition.
Normalise the canonical coefficients.

6) Determine states and residuals.
7) Compute monitoring indices T 2 and Q at each time

point as the sum of the squared state variables and
residuals respectively.



B. On-Line Monitoring

1) Acquire test data and define past and future matrices and
arrange data similar to training data.

2) Form kernel matrices of the past and future measure-
ments using the same function and parameters used in
the training stage and mean-centre.

3) Calculate states and residuals of test data.
4) Compute T 2 and Q of test data.
5) Monitor process by comparing value of T 2 and Q

against their control limits. A fault is detected if both
monitoring indices exceed their control limits.

V. APPLICATION STUDY

In this section kernel CVA via QR decomposition and
kernel CVA with regularisation were applied to the Tennessee
Eastman (TE) process for monitoring performance evaluation.
Faults 3, 9, and 15 of the TE process were considered for the
application study. Faults 3 and 9 are step change and random
variation in D feed temperature respectively, while Fault 15
is condenser cooling water sticking. These faults are usually
more difficult to detect in the TE process.

A. Tennessee Eastman Process

The TE process is a simulation of a real industrial plant
manifesting both non-linear and dynamic properties. It is
widely used as a benchmark process for evaluating process
monitoring and control approaches [18]. It is made up of
five major units: separator, compressor, reactor, stripper and
condenser, and eight components coded A to H. A schematic
diagramme of the processes is presented in Figure 1.

Fig. 1: Schematic diagramme of TE process

The TE process consists of 960 samples and 52 vari-
ables which include 22 continuous variables, 19 composition
measurements sampled by 3 composition analysers and 12
manipulated variables. All the 22 continuous variables and
11 manipulated variables were used in this study. Variables
1 to 22 in Table I are measurement variables while 23 to 33
are manipulated variables. The agitation speed of the reactor’s

TABLE I: Monitoring variables for the TE process

No. Description No. Description
1 A feed (stream 1) 18 Stripper temperature
2 D feed (stream 2) 19 Stripper stream flow
3 E feed (stream 3) 20 Compressor work
4 Total feed (stream 4) 21 Reactor cooling water outlet temp
5 Recycle flow (stream 8) 22 Separator cooling water outlet temp
6 Reactor feed rate (stream 6) 23 D feed flow (stream 2)
7 Reactor pressure 24 E feed flow (stream 3)
8 Reactor level 25 A feed flow (stream 1)
9 Reactor temperature 26 Total feed flow (stream 4)
10 Purge rate 27 Compressor recycle valve
11 Separator temperature 28 Purge valve (stream 9)
12 Separator level 29 Separator pot liquid flow (stream 10)
13 Separator pressure 30 Stripper liquid product flow
14 Separator under flow 31 D Stripper stream valve
15 Stripper level 32 Reactor cooling water flow
16 Stripper pressure 33 Condenser cooling water flow
17 Stripper under flow

stirrer (the 12th manipulated variable) was not included be-
cause it is constant. Details of the 33 variables are shown in
Table I.

B. Parameters Selection

Some key parameters were determined to optimise the
approach. These include the kernel used and its bandwidth,
the length of lag used, and the number of states retained. The
radial basis kernel which is a common choice in previous
studies [14], [19] was used in this paper. The value of the
kernel parameter c can be determined using cross validation
or by using the relation c = Wnσ2, where W is a constant
which is dependent on the data being used, n and σ2 are the
dimension and variance of the input space respectively [14],
[20]. The latter method was adopted in this study with a value
of c = 20.

The length of lag represents the number of past or future
observations that correlate significantly with an observation at
a particular time point. For the CVA algorithm, the optimal
number of lags can be obtained by considering the summed
squares of all process measurements [4]. Consequently, a lag
of 15 was adopted.

According to Negiz and Cinar [21], the states to retain can
be selected based on the number of dominant singular values.
Fig. 2 shows the normalised singular values of the training
data. It can be observed from Fig. 2 that the singular values
decrease very slowly. Therefore, choosing how many states
to retain based on dominant singular values will not give a
realistic model [4]. Furthermore, the number of states retained
does not really matter in this case because the monitoring
indices were used jointly for fault detection due to their
complementary nature. This means that fault detection is
acknowledged if either the T 2 or Q statistic detects a fault
since detectable process variation may not always occur in
both the model space and the residual space at the same time.
Consequently, 16 states were retained to curtail the false alarm
rate.



Fig. 2: Normalised singular values of training data

C. Results and Discussion

Monitoring performance was based on fault detection rates
(FDR), false alarm rate (FAR), and detection time. FDR is the
percentage of faulty observations identified correctly. It was
computed as

FDR =
θfc
θtf
× 100 (17)

where θfc denotes the number of fault samples identified
correctly and θtf is the total number of fault samples. FAR
is the percentage of observations identified as abnormal under
normal operating mode. It was calculated as,

FAR =
θnf
θtn
× 100 (18)

where θnf is number of normal observations reported as faulty
and θtn represent the total number of normal observations.
Detection delay was computed as the amount of time that
passes before a fault is detected after it has occurred.

Table IIa shows the rate of fault detection for Faults 3,
9 and 15 using the QR decomposition approach while Ta-
bles IIb, IIc, and IId show results obtained at different values
of regularisation for the same faults. The detection rates at a
regularisation value of 10−2 were the lowest (51.25, 78.13,
and 85.38 percent) for Faults 3, 9 and 15 respectively. At a
very small regularization value of 10−8, the detection rates
improved but the values were still lower than the results
obtained via QR decomposition. Also, the detection delay for
the QR-based approach for all three faults was 15 seconds
while the corresponding rates for the technique based on
regularisation were 54/45, 84/63, and 54/45 seconds for Faults
3, 9 and 15 respectively for the worst and best detection time
delays. In all faults considered, the QR based detection times
were better than the best detection times obtained via the
regularisation approach. The regularisation approach also had
higher FARs (which makes it relatively poorer) except for the
smallest regularisation value.

Fig. 3 shows the monitoring statistics for Fault 15. The
poor monitoring performance arising from choosing a poor

TABLE II: Detection performance (a) KCVA with QR decom-
position (Faults 3, 9 and 15), (b) KCVA with regularisation
(Fault 3), (c) KCVA with regularisation (Fault 9), and (d)
KCVA with regularisation (Fault 15)

(a)

Fault 3 Fault 9 Fault 15
FDR (%) 98.25 97.50 98.25
FAR 0.0382 0.0382 0.0382
Detection delay, s 15 15 15

(b)

Regularisation value 10−2 10−5 10−8

FDR (%) 51.25 98.13 98.13
FAR 0.0458 0.0840 0.0076
Detection delay, s 54 45 45

(c)

Regularisation value 10−2 10−5 10−8

FDR (%) 78.13 97.38 97.38
FAR 0.0458 0.0840 0
Detection delay, s 84 63 63

(d)

Regularisation value 10−2 10−5 10−8

FDR (%) 85.38 98.13 98.13
FAR 0.0458 0.0840 0
Detection delay, s 54 45 45

regularisation value is shown in Fig 3b. It can be seen that the
monitoring index (the solid signal) did not fully go above the
control limit (dash-dot horizontal line) most of the time which
shows that fault detection performance was poor.

VI. CONCLUSIONS

The existing kernel CVA technique is improved in this paper
for detecting process faults. Problems of non-linearity and
dynamism in processes were accounted for simultaneously
by employing the kernel principle followed by the CVA
technique. In the proposed method the product matrix obtained
from the past and future kernel matrices, on which singular
value decomposition was performed at the CVA stage, was
obtained via QR decomposition to avoid singularity problems
associated with kernel matrices, such that there was no need to
carry out regularisation of the generated kernel data. Results
obtained from applying this technique to the Tennessee East-
man process were compared with results based on different
values of regularisation. The results show that the proposed
technique outperformed the KCVA based on regularisation
in both monitoring rate and the time taken to detect faults.
This supports the effectiveness of the proposed method in
enhancing process monitoring performance. Avoiding the need
to determine an optimum regularisation value reduces the
parameters required for implementing kernel-based CVA by



(a)

(b)

(c)

Fig. 3: Monitoring statistics of Fault 15. (a) KCVA with
QR, (b) KCVA with regularisation (10−2), (c) KCVA with
regularisation (10−8)

one. This is desired because a poorly chosen regularisation
parameter gives poor monitoring results.
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