Extending Classical Higher-Order Logic with Second-Order Polymorphism
- A Taster -

Norbert Völker
CSEE Logic Seminar 17 May 2011
Overview

• Simply-typed lambda-calculus
• Classical-higher order logic
• Beyond simply-typed polymorphism
 • Type-operator variables
 • Type abstraction
• Extending HOL with second-order polymorphism
 • Problem
 • Solution
 • Logic
• Related and further work
Simply-Typed Polymorphic Lambda Calculus

- Terms
- Types
- Currying
- Conversion rules
 - normal form
- Type inference

HOL = "logic built on simply typed lambda calculus"
HOL Terms and Types

\[t ::= \begin{align*}
& v : T \quad \text{variable} \\
| & c : T \quad \text{constant} \\
| & t \; t \quad \text{application} \\
| & \lambda (v : T). \; t \quad \text{abstraction}
\end{align*} \]

\[T ::= \alpha \quad \text{type variable} \]
\[\quad \begin{align*}
| & (T_1, \ldots, T_n) \; \tau \quad \text{type constructor application } (n \geq 0)
\end{align*} \]

- HOL logical core
 - type constructors: \(\text{bool}, (\to) \)
 - term constants: \((=), \text{eps} \)
- Other types and terms can be defined.
- \textit{Exercise}: what is the type of \((=) \) and \(\text{eps} \)?
- \textit{Exercise}: name two constants of type \((\alpha \to \text{bool}) \to \text{bool} \)
Classical Higher Order Logic (HOL)

• Core axioms:
 • equality is reflexive
 • equality is preserved by lambda calculus conversions
 • ...
• Definition principles for introducing new types and terms
• Classical: \[P \lor \neg P \]
• Extensional: \[\forall x. f x = g x \implies f = g \]

• Can define new types and then prove induction theorems
• Example:
 \[P [] \land (\forall x xs. P xs \implies P (\text{cons}(x, xs)) \implies P (xs: (\alpha)\text{list})) \]
• Predicates can be seen as typed sets:
 \[(\alpha)\text{ set} \equiv (\alpha \rightarrow \text{bool}) \]
 \[(x: \alpha) \in (xs: \alpha\text{ set}) \equiv xs x \]
How HOL Avoids Russel's Paradox

- Can we define "a set containing all those sets that do not contain themselves"?
- No - we can not define a predicate

\[\lambda (x:\alpha). \neg(x \in x) \]

- In fact, HOL has a set-theoretic semantics.
Higher Order Unification and Matching

- HOL is cool
 - but more complicated than 1st order logic.
- Consider the basic unification problem
 - Given two terms t and u, is there a substitution θ such that $t\theta$ and $u\theta$ have the same normal form?
 - This problem is undecidable.
- Higher-order matching is an instance where u is a closed term, so we are simply asking if t can be pattern-matched to u.
 - This has recently been proved decidable [Stirling 2007].
 The author says the proof is very complicated.
- There are special cases of higher-order matching and unification that can be solved efficiently.
 - Google comes up with 200K+ matches for the phrase "higher order unification".
Type Extension Motivation 1: Category Theory

- HOL theory developments often make use of:
 - total functions: $\alpha \rightarrow \beta$
 - partial functions: $\alpha \rightarrow \beta$ *option*
 - relations: $\alpha \sim \beta$

- Category theory has helped to unify mathematics - can it also unify HOL theory developments?
 - We would like to abstract over the three type constructors above.

- Solution: introduce *n*-ary type operator variables that can be instantiated with *n*-ary type constructors.

- Then we can form types like $(\alpha, \beta)\phi$ where
 - ϕ is a 2-ary type operator variable
 - ϕ can be instantiated to *any* 2-ary type constructor.

- Exercise. Compare type operator instantiation with o-o inheritance.
Motivation 2: Advanced Programming Types

- In Haskell, a monad consists of a type constructor M and two functions

 $\text{unit} : \alpha \to (\alpha)M$

 $\text{bind} : \alpha M \to (\alpha \to \beta M) \to \beta M$

 subject to rules

 $\text{bind } f \ \text{unit } = f$

 $\text{bind } \text{unit } = \text{id}$

 $\text{bind } (\text{bind } g \ f) = \text{bind } g \ \text{bind } f$

- Monads are everywhere.

- **Exercise**: define a list monad.

- Suppose we try to define a HOL predicate

 $\text{monad}(\text{unit}, \text{bind}) = ...$

- We need a 1-ary type operator variable ϕ to vary over M.

 - but there is another problem.
An Important Detail of Simple Types.

- Recall that the bound variable in a lambda abstraction is typed:
 \[\lambda (v : T). t \]

- What does this mean?
 - In the abstraction body \(t \), only occurrences of \(v \) with the (exact type) \(T \) refer to the bound variable.
 - To put it differently - the bound variable \(v \) cannot occur with different types in the abstraction body.

- This single-type restriction is a problem in the \textit{monad} definition
 - variable \textit{bind} occurs with different types in the axioms.

- Observation. The restriction does not apply to constants. Example:
 \[(id: \alpha \to \alpha) \equiv \lambda (v : \alpha). v \]

 We can form the term
 \[id \ id = (id:(\alpha \to \alpha) \to (\alpha \to \alpha)) \ (id: \alpha \to \alpha) \]

 For a variable \(f \), it is impossible to form \((f f) \).
Universal Types

• We can overcome the single-type restriction by introducing universal types that bind type variables ("pi-types")
 \[\Pi \alpha_1 \ldots \alpha_n. T \]

• Type abstraction and type application on terms:
 \[\Lambda \alpha. t \]
 \[t [\ T\] \]

• Now bound variables can belong to a universal type.
 • We can apply them to different types in the body.
 • This allows us to define a predicate \textit{monad} as above.

• The simply typed lambda calculus can be seen as a special case of universal types where all type variables are bound at "outermost level".

• But there is a problem.
Girard's Paradox

- HOL extended with universal types is inconsistent [Coquand 1994].
 - Inconsistency proofs vary depending on precise logic definitions.
 - Define a mapping \(i : \Pi \alpha. \alpha \rightarrow \alpha \rightarrow U_0 \) where
 \[
 U_0 = ((\Pi \alpha. \alpha \rightarrow \text{bool}) \rightarrow \text{bool})
 \]
 \[
 i = \Lambda \alpha. \lambda (r:\alpha \rightarrow \alpha) (p:(\Pi \alpha. \alpha \rightarrow \text{bool}) \rightarrow \text{bool}). (p[\alpha]) r
 \]
 - Define a strict well-ordering \(<_0\) on \(i \)-image of all well-orderings.
 - Consider \(\Omega = i(<_0) \)
 - Deduce \(\Omega <_0 \Omega \).
- Intuitively, the problem is caused by self-reference: In the type \((\Pi \alpha. T)\), the type variable \(\alpha \) can again be instantiated with \((\Pi \alpha. T)\).
 - This would be like forming a set-theoretic product over all sets. This is not allowed in set-theory.
- What to do?
HOL2P Solution: Small Types

- Idea: restrict the power of universal types so that $(\Pi \alpha. T)$ can not be applied to itself.
- Radical solution:
 - Introduce a notion of "small types" that excludes universal types
 - Restrict type abstraction and application to small types.
 - This ensures a set-theoretic semantics and consistency

- HOL2P = HOL + type operator variables
 + abstraction over small types

- "2P" indicates "second order polymorphism"
 - Added one layer so we can abstract over normal HOL types.

- I suspect this construction is "logician folklore", but I am not aware it has been formalised before.
HOL2P Types

\[T ::= (\alpha :: \textit{small}) \quad \text{small type variable} \]
\[| (\alpha) \quad \text{unrestricted type variable} \]
\[| (T_1, \ldots, T_n)_{\tau} \quad \text{type constructor application} \]
\[| (T_1, \ldots, T_n)_{\phi} \quad \text{type operator variable application} \]
\[| \Pi \alpha_1 \ldots \alpha_n. T \quad \text{universal type} \]

- \textit{Small} types contain no universal types and no unrestricted ty vars.
 - These types correspond to normal HOL types
- Formation of universal types is restricted to small types \(\alpha_1, \ldots, \alpha_n, T \)
- Type substitution must respect smallness.
- Types are \(\alpha\)-equivalent if they are convertible by renaming of bound type variables.
- There is no "applying a universal type to a type" type
 - Types can be seen as implicitly type-\(\beta \) reduced.
HOL2P Terms

\[t ::= \begin{array}{ll}
 v : T & \text{variable} \\
 c : T & \text{constant} \\
 t \ t & \text{application} \\
 \lambda (v : T). t & \text{abstraction} \\
 \Lambda \alpha. t & \text{type abstraction (\(\alpha\) small)} \\
 t \ [\ T \] & \text{type application (}\ T \ \text{small)}
\end{array} \]

Formation rule: the type of a free variable \(v\) must not contain bound type variables.

Typing rules:

\[
 t : T \vdash (\Lambda \alpha. t) : \Pi \alpha. T \\
 (t : \Pi \alpha. S) \vdash t [T] : S[T \ \backslash \alpha]
\]
HOL2P Rules

- All HOL inference rules apply also in HOL2P.
- Additional rules:

 \[\Gamma \vdash s = t \]
 \[\Gamma \vdash \Lambda \alpha. s = \Lambda \alpha. t \] \hspace{1cm} (TYABS)

 \[\Gamma \vdash s = t \]
 \[\Gamma \vdash s[S] = t[T] \]
 \[\{ T \equiv \alpha S \} \] \hspace{1cm} (TYAPP)

 \[\Gamma \vdash (\Lambda \alpha. t)[\alpha] = t \] \hspace{1cm} (TYBETA)

Exercise: What is the type of equality in HOL2P?
Type Quantification

- Type quantification can be defined as an abbreviation in HOL2P:
 \[\forall \alpha. \ p \equiv ((\Lambda \alpha. \ p) = (\Lambda \alpha. \ True)) \]
 \[\exists \alpha. \ p \equiv ((\Lambda \alpha. \ p) \neq (\Lambda \alpha. \ False)) \]

- Example

 \[isFunctor : (\Pi \alpha \ \beta. \ ((\alpha \to \beta) \to \alpha \phi \to \beta \phi) \to bool \]

 \[isFunctor (\varphi) = (\forall \alpha. \ \varphi[\alpha][\alpha] \ id = id \) \]

 \[\land (\forall \alpha \ \beta \ \gamma. \ \forall \ (g: \beta \to \gamma) \ (f: \alpha \to \beta) \).
 \]

 \[\ \varphi[\alpha][\gamma](g \ f) = \varphi \ [\beta][\gamma] \ g \ \varphi \ [\alpha][\beta] \ f \) \]
HOL2P System [2007]

- Implementation of HOL2P theorem prover on top of existing HOL-Light system.
- Preserves compatibility with HOL-LIGHT as much as possible.
- Parsing will automatically try to insert certain type applications.
- Has been used for some relatively small applications.
Type Matching and Inference Problem

- Type operator variables make HOL2P type matching “higher order”:
 - Matching problems like

 \((?x)?F = \text{nat list list}\)

 have in general several solutions:

 (1) \(?F = \Lambda \ 'a. \ 'a \ ?x = (\text{nat list}) \text{ list}\)
 (2) \(?F = \text{list} \ ?x = (\text{nat list})\)
 (3) \(?F = \Lambda \ 'a. \ 'a \text{ list list} \ ?x = \text{nat}\)
 (4) \(?F = \Lambda \ 'a. \ \text{nat list list} \ ?x = \text{“any type”}\)

- Without guidance, the current HOL2P implementation will only find the second match.
- Users often need to add explicit type instantiations when parsing terms or applying rules that involve type operator variables.
Related and Further Work

Related work:
- COQ based on constructive type theory
- HOL-Omega extends HOL2P

Further work
- improve HOL2P tactics and type inference
- study complexity of HOL2P algorithms
- investigate combination with overloading/ type classes.
- mechanically check the HOL2P semantics and the implementation of its logical core
- run paradox proofs in an "unrestricted version of HOL2P"
- applications
 - put category theory to use in HOL2P
 - derivation of generic programs as in "Algebra of Programming"